Agentic AI-Powered Travel Planner

 Presenting by Madhan Kumar S

  


Introduction

The Agentic AI MCP Tour Planner is an end-to-end, AI-powered travel planning application. It leverages advanced agentic workflows, Retrieval Augmented Generation (RAG), and multi-tool orchestration to deliver highly personalized travel recommendations and accommodation options. The project is designed with modularity and scalability in mind, using modern Python frameworks and containerization for ease of deployment.

 Technologies Used

  • LangGraph: Agentic workflow orchestration
  • LangChain: LLM and tool integration
  • Streamlit: Frontend UI
  • FastAPI: Backend API
  • FAISS: Vector search for RAG
  • Tavily: Internet search tool
  • MCP Tool: Accommodation search
  • Ollama/Groq: LLM inference
  • Docker: Containerization

 Flow Chart


 LangGraph state flow

 Key Features

  • Agentic AI Flow: Utilizes LangGraph to manage complex, multi-step reasoning and tool invocation, enabling the agent to plan and adapt dynamically.
  • Retrieval Augmented Generation (RAG): Integrates FAISS for vector search and custom RAG pipelines, ensuring context-rich and up-to-date responses.
  • Multi-Tool Orchestration: Combines local RAG tools, internet search (Tavily), and accommodation search (MCP/Airbnb tool) for comprehensive planning.
  • Modern Frontend: Built with Streamlit for an interactive and user-friendly experience.
  • FastAPI Backend: Provides a robust API layer for agent orchestration and tool management.
  • LLM Flexibility: Supports both local (Ollama) and cloud (Groq) Large Language Models (LLMs).
  • Logging & Tracing: Integrated logging and LangSmith tracing for debugging and observability.
  • Containerization: Uses Docker for consistent and reproducible deployments.

 

How It Works

  1. User Input:
    Users interact with the Streamlit frontend, specifying their destination, preferences (e.g., beaches, adventure), number of guests, and travel dates.
  2. Agentic Flow:
    The backend agent, orchestrated by LangGraph, determines which tools to invoke:
    • RAG Tools: Retrieve relevant travel information from vector stores.
    • Tavily Search: Fetches up-to-date web results for the latest travel info.
    • MCP/Airbnb Tool: Finds accommodation options matching user criteria.
  3. LLM Reasoning:
    The agent synthesizes all results using an LLM, generating a comprehensive travel plan and recommendations.
  4. Response:
    The frontend displays the AI-generated itinerary, including places to visit, accommodation details, prices, and facilities.

 

Project Structure

Agentic-AI-MCP-Tour-Planner/

── backend/

│   ── app/

│   │   ── api/                # API endpoints (FastAPI)

│   │   ── configs/            # Configuration files

│   │   ── core/               # Core agent logic and services

│   │   ── resource/           # Data and static resources

│   │   ── utils/              # Utility modules (RAG, LLM, etc.)

│   │   ── main.py             # Backend entry point

│   │   └── ...                 

│   ── Dockerfile              # Backend Dockerfile

│   └── ...

── frontend/

│   ── app.py                  # Streamlit frontend

│   ── Dockerfile              # Frontend Dockerfile

│   └── ...

── docker-compose.yml          # Orchestration for multi-container setup

└── README.md                   # Project documentation

 

Backend Details

  • Agentic Workflow:
    The backend uses LangGraph to define a directed graph of agent states and transitions. Each node can invoke tools (e.g., RAG, accommodation search) and pass results to the next stage.
  • RAG Implementation:
    Custom tools in app/utils/local_tools.py handle retrieval from vector stores and synthesis using LLMs.
  • Accommodation Search:
    Integrates with MCP/Airbnb APIs to fetch real-time accommodation data.
  • API Layer:
    FastAPI exposes endpoints for frontend-backend communication.

 

Frontend Details

  • Streamlit UI:
    The frontend, built with Streamlit, provides an intuitive interface for users to input their travel preferences and view AI-generated plans.
  • Dockerized Deployment:
    The Dockerfile ensures all dependencies are installed and the app runs reliably in any environment.

Conclusion

The Agentic AI MCP Tour Planner demonstrates the power of combining agentic workflows, RAG, and multi-tool orchestration for real-world applications. Its modular design, modern tech stack, and containerized deployment make it a robust solution for intelligent travel planning.

 

 


Comments

Popular posts from this blog

Detecting stranger through CCTV camera and alerting the owner

Artificial Intelligent Chatbot

Whatsapp chat book